58 research outputs found

    Learning Residual Images for Face Attribute Manipulation

    Full text link
    Face attributes are interesting due to their detailed description of human faces. Unlike prior researches working on attribute prediction, we address an inverse and more challenging problem called face attribute manipulation which aims at modifying a face image according to a given attribute value. Instead of manipulating the whole image, we propose to learn the corresponding residual image defined as the difference between images before and after the manipulation. In this way, the manipulation can be operated efficiently with modest pixel modification. The framework of our approach is based on the Generative Adversarial Network. It consists of two image transformation networks and a discriminative network. The transformation networks are responsible for the attribute manipulation and its dual operation and the discriminative network is used to distinguish the generated images from real images. We also apply dual learning to allow transformation networks to learn from each other. Experiments show that residual images can be effectively learned and used for attribute manipulations. The generated images remain most of the details in attribute-irrelevant areas

    A Double Joint Bayesian Approach for J-Vector Based Text-dependent Speaker Verification

    Full text link
    J-vector has been proved to be very effective in text-dependent speaker verification with short-duration speech. However, the current state-of-the-art back-end classifiers, e.g. joint Bayesian model, cannot make full use of such deep features. In this paper, we generalize the standard joint Bayesian approach to model the multi-faceted information in the j-vector explicitly and jointly. In our generalization, the j-vector was modeled as a result derived by a generative Double Joint Bayesian (DoJoBa) model, which contains several kinds of latent variables. With DoJoBa, we are able to explicitly build a model that can combine multiple heterogeneous information from the j-vectors. In verification step, we calculated the likelihood to describe whether the two j-vectors having consistent labels or not. On the public RSR2015 data corpus, the experimental results showed that our approach can achieve 0.02\% EER and 0.02\% EER for impostor wrong and impostor correct cases respectively
    • …
    corecore